4 research outputs found

    An Agent-Based Model of Multifunctional Agricultural Landscape Using Genetic Algorithms

    Get PDF
    Landowner characteristics influence his/her willingness to change landuse practices to provide more or less environmental benefits. However, most studies of agricultural/environmental polices identify landowners as homogenous. And, the primary cause of failure of many environmental and other polices is the lack of knowledge on how humans may respond to polices based on changes in their behavior (Stern, 1993). From socioeconomic theory and empirical research, landowners can be identified as individuals who make agricultural landuse decisions independently based on their objectives. Identifying possible classes of landowners, assessing how each would potentially respond to policy alternatives, and the resulting pattern of land uses in a watershed or a riparian corridor would be very useful to policy makers as they evaluated alternatives. Agricultural landscapes are important producers of ecosystem services. The mix of ecosystem services and commodity outputs of an agricultural landscape depends on the spatial pattern of land uses emerging from individual land use decisions. However, many empirical studies show that the production of ecosystem services from agricultural landscapes is declining. This is consistent with research conducted over the last few decades showing there is a narrow range of social circumstances under which landowners are willing to make investments in the present to achieve public benefits in the future through investing in natural capital resulting in public goods which are frequently produced as ecosystem services. In this study an agent-based model within a watershed planning context is used to analyze the tradeoffs involved in producing a number of ecosystem services and agricultural commodities given price and policy scenarios while assuming three different types of agents in terms of their goals. The agents represent landowners who have been divided into a number of different groups based on their goals and the size of their farm operations. The multi-agent-based model is developed using a heuristic search and optimization technique called genetic algorithm (GA) (Holland), which belongs to a broader class of evolutionary algorithms. GAs exhibit three properties (1) they start with a population of solution, (2) they explore the solution space through recombination and mutation and (3) they evaluate individual solutions based on their appropriate fitness value(s), for example given profit maximizing agents this would be gross margin. A GA is a heuristic stochastic search and optimization method, which works by mimicking the evolutionary principles and chromosomal processing in natural genetics. The three economic agents that are modeled are based on variations in their objective functions and constraints. This study will help in identifying the tradeoffs associated with various agents in the provision of ecosystem services and agricultural commodities. The agent model developed here will help policy and decision maker identify the various agents within the watershed and assess various policy options based on that information. The study will also help to understand the interaction and feedback between the agents and their environment associated with various policy initiatives. The results of the study indicate that the agent model correctly predicts the actual landuse landcover map by 75 percent.Multifunctional agriculture, Agent based modeling, Genetic Algorithm, Environmental Economics and Policy, Land Economics/Use,

    The Evolution and empirical estimation of ecological-economic production possibility frontiers

    No full text
    This paper presents a graphical model of an ecological-economic production possibilities frontier (EEPPF) that explicitly considers the roles of market failure and technological asymmetry in the provision of ecosystem goods and services. An empirical example of a 6-dimensional EEPPF is provided using a watershed in Illinois where three provisioning ecosystem services (corn, soybeans, hay) and three regulating services (flood control, water quality, and carbon retention) are the objectives. When aggregated, provisioning and regulatory services form a linear-to-convex EEPPF, but regulatory services can be increased from 10 to over 90% of optimal with a reduction in provisioning services (crops) from 100 to 78% of optimal. While corn and soybeans are shown to form a trade-off with all other ecosystem services, hay is complementary with flood control, water quality and carbon retention. These three regulating services are complementary with one another, with water quality and carbon correlated at 0.80. These results demonstrate the use of GIS, distributed watershed models such as SWAT, and genetic algorithms as a valuable method to estimate empirical EEPPFs

    Impacts of climate change on crop growing season characteristics in Northern Ethiopia

    No full text
    Understanding the likely impact of climate change on crop growth is very important to identify possible areas of intervention and consider climate-related impacts. This study aimed to investigate the future impact of climate change on the crop growing season in the Tigray region. Five global climate models under two representative concentration paths were projected for future periods using a delta downscaling approach. Results indicate that projections of rainfall showed an increase in annual and summer (Kiremt) rainfall at most stations. However, the Belg rainfall season had a declining trend except under RCP4.5 in a mid-term period that showed positive changes at most stations. On the contrary, projections of maximum and minimum temperatures indicated a continuous increase. In line with the increase in temperatures, the reference evapotranspiration consistently increased at all stations. Cumulatively, late onset and early cessation of rainfall are observed, accompanied by a 5.5–19% reduction in the length of the growing period (LGP), exacerbating the current short LGP in the study area and affecting the proper growth and maturity of major crops. The findings of this study have global implications in that similar areas may be alarmed to get prepared ahead and develop adaptive and sustainable crop production strategies. HIGHLIGHTS Future climate variables are expected to include more warming and larger changes in rainfall patterns.; Projections of the growing season in the main rainy season indicated a tendency for late onset and early cessation. These changes will present a challenge to crop production in the study area as well as in other similar areas.

    An Agent-Based Model of Multifunctional Agricultural Landscape Using Genetic Algorithms

    No full text
    Landowner characteristics influence his/her willingness to change landuse practices to provide more or less environmental benefits. However, most studies of agricultural/environmental polices identify landowners as homogenous. And, the primary cause of failure of many environmental and other polices is the lack of knowledge on how humans may respond to polices based on changes in their behavior (Stern, 1993). From socioeconomic theory and empirical research, landowners can be identified as individuals who make agricultural landuse decisions independently based on their objectives. Identifying possible classes of landowners, assessing how each would potentially respond to policy alternatives, and the resulting pattern of land uses in a watershed or a riparian corridor would be very useful to policy makers as they evaluated alternatives. Agricultural landscapes are important producers of ecosystem services. The mix of ecosystem services and commodity outputs of an agricultural landscape depends on the spatial pattern of land uses emerging from individual land use decisions. However, many empirical studies show that the production of ecosystem services from agricultural landscapes is declining. This is consistent with research conducted over the last few decades showing there is a narrow range of social circumstances under which landowners are willing to make investments in the present to achieve public benefits in the future through investing in natural capital resulting in public goods which are frequently produced as ecosystem services. In this study an agent-based model within a watershed planning context is used to analyze the tradeoffs involved in producing a number of ecosystem services and agricultural commodities given price and policy scenarios while assuming three different types of agents in terms of their goals. The agents represent landowners who have been divided into a number of different groups based on their goals and the size of their farm operations. The multi-agent-based model is developed using a heuristic search and optimization technique called genetic algorithm (GA) (Holland), which belongs to a broader class of evolutionary algorithms. GAs exhibit three properties (1) they start with a population of solution, (2) they explore the solution space through recombination and mutation and (3) they evaluate individual solutions based on their appropriate fitness value(s), for example given profit maximizing agents this would be gross margin. A GA is a heuristic stochastic search and optimization method, which works by mimicking the evolutionary principles and chromosomal processing in natural genetics. The three economic agents that are modeled are based on variations in their objective functions and constraints. This study will help in identifying the tradeoffs associated with various agents in the provision of ecosystem services and agricultural commodities. The agent model developed here will help policy and decision maker identify the various agents within the watershed and assess various policy options based on that information. The study will also help to understand the interaction and feedback between the agents and their environment associated with various policy initiatives. The results of the study indicate that the agent model correctly predicts the actual landuse landcover map by 75 percent
    corecore